
Evaluation of association methods 
The GWAS analysis in this study was performed using TASSEL v5.2.84 statistical 
software (Bradbury et al., 2007). TASSEL provides the opportunity to include indels 
(insertion & deletions) in the analysis, which most other GWAS software ignore. Given 
the presence of indels in our dataset, we used TASSEL for our study. 

Before we decided on the most  appropriate method to conduct GWA studies, we 
evaluated four models using a publicly available flowering time dataset, from which we 
extracted data corresponding to the landrace collection that we evaluated throughout our 
study: (Mansueto et al., 2017): i) a general linear model (GLM), ii) a general linear model 
containing a principal component analysis (PCA) correction for population structure (GLM 
+ PCA), iii) a mixed linear model (MLM) including a kinship matrix (MLM + K) as a random 
effect, and iv) an MLM including both population structure and kinship relations (MLM + 
PCA + K). For iii and iv, the MLM used the Centered IBS matrix calculated in Tassel. 
GWAS results are not sensitive to the number of PCs (Price et al., 2006). For this reason, 
in the GLM + PCA analysis and MLM + PCA + K, we chose the first five components as 
the population structure matrix to conduct our GWAS (Zhao et al., 2018). The kinship 
matrix in the MLM models was constructed using the ‘Centered IBS’ kinship method in 
TASSEL. The MLM analysis was conducted with the options of compression and re-
evaluation of variances at each marker. 

 
 

Figure1. GLM + PCA is the most appropriate model to conduct GWAS in our dataset. A. Manhattan plots 
displaying the results from four GWAS models using publicly available flowering time data. See text for a description of 
Manhattan plots. B. Distribution of P-values with the results of these four GWAS models. C. Number of significant 
associations obtained from these four models as a function of the q-value cut-off. 
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The Manhattan plots represent the P-values of the four GWAS models we tested 
(Fig. 1A). Datapoints depicting individual genetic variants are represented in genomic 
order by color-demarcated chromosome and position (x-axis). The value on the y-axis 
represents the score of the association of each variant with natural variation in flowering 
time for Japonica landraces. The score is the −log10 of the P-value, so the higher the 
score (and therefore, the lower the P-value), the stronger the association of any given 
variant with flowering time. As a result of the local correlation of causative genetic variants 
with neighboring variants arising from the relationship between genetic distance and 
recombination, groups of significant P-values tend to rise up on the plot, making the graph 
look like a Manhattan skyline, hence the name. 

Flowering time, also known in rice as the heading date, is an appropriate trait to 
test the effectiveness of these different GWAS models in our dataset because the switch 
from vegetative to reproductive development is an important adaptive trait that is well-
studied, and the causality of several QTLs previously identified through GWAS analysis 
has been demonstrated. From the study of the resulting Manhattan plots resulting from 
these four GWAs methods, we can identify in the GLM + PCA method four clear peaks 
within the FDR < 0.01 threshold in the regions of: 1) OsFTL1 (Os01g0218500; 
FLOWERING LOCUS T (FT)-Like homolog), 2) OsHD2 (Os07g0695100; HEADING 
DATE 2), 3) OsRF1 (Os10g0497432; RESTORATION OF FERTILITY 1), and 4) OsMEL2 
(Os12g0572800; MEIOSIS ARRESTED AT LEPTOTENE 2). These genes have 
previously been functionally associated with the transition front vegetative to reproductive 
phase in rice (Komori et al., 2004; Nonomura et al., 2011; Ogiso-Tanaka et al., 2013; Liu 
et al., 2021), increasing confidence in the robustness of the GLM + PCA model  for our 
application. 

These peaks in the Manhattan plot are also present in the GLM model, but we 
cannot identify these ‘towers’ due to the confounding effects introduced by false positives 
arising from the structure of the population. Indeed, a major problem in association 
mapping is controlling the spurious associations that can arise from population structure. 
This becomes evident when we observe the distinct inflation of P-values that approach 
statistical significance in the GLM method (Fig. 1A and B). This inflation in P-values 
makes it impossible to reliably identify causal variants. The GLM with PCA model is 
expected to reduce false positives that arise due only to population structure (Price et al., 
2006), as we demonstrate in Figure 1 for flowering time. As a result, the PCA correction 
for population structure allows us to identify the appropriate candidates. 

The MLM with PCA and K model includes the kinship matrix in the model and is 
expected to further reduce false positives that arise from family relatedness (Yu et al., 
2006). The MLM model alone has been reported to perform better than the GLM model 
alone by controlling false positives (Yu et al., 2006). The advantage of the MLM model to 
prevent false positives disappears for complex traits when these are associated with 
population structure resulting from extensive genetic divergence. The MLM model 
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controls the P-value inflation well but also increases false negatives, weakening the 
identification of true associations (Zhang et al., 2010). Indeed, our analysis shows that 
the MLM model introduces an over-correction, i.e. a type II error, that renders this analysis 
problematic by completely removing identification of true positives. This is evident from 
the inspection of the Manhattan plots, where there are no significant associations using 
a significance threshold of FDR of 1% in the MLM models -- the four ‘towers’ that we 
identify in the GLM + PCA model, which correspond to four genes known to be flowering-
related, are not present.  

To further illustrate this, we applied the ‘qvalue’ package in R (R Core Team) to 
the P-values resulting from each of these four GWAS models to determine the number of 
significant associations versus each q-value cut-off (Fig. 1C). As a result, we can observe 
that in the GLM model, there is an inflation in the number of significant tests. This inflation 
is corrected once we correct for population structure (GLM + PCA). MLM models result 
in overcorrection and the absence of significant associations regardless of the 
significance threshold we impose (Figure 1C for MLM + PCA + K and MLM + K).  

After careful consideration, we determined that GLM + PCA is the most appropriate 
model for our study. In support of this decision, previous work utilizing this GWA model in 
rice has proven its efficacy (Sales et al., 2017; Mogga et al., 2019; Vargas et al., 2020; 
Bai et al., 2022). We acknowledge that despite the imposition of correction for population 
structure (compared to the inflation of significant P-values present in the GLM model that 
we correct in the GLM + PCA model), our results, as is inherently true for all GWA studies, 
will unavoidably have a number of spurious associations. When interpreting our results, 
it is important to remember that correlation does not equal causation, and any 
associations found here cannot be assumed to be definitely adaptive or causative. We 
have reduced type I error, but the presence of spurious associations among the identified 
causative variants, while minimized, is to be expected. 

MLM models are computationally demanding and require substantial 
computational resources and time. In our study, we conducted GWA analysis in SNPs 
and INDEL datasets from 658 Indica and 283 Japonica rice landraces to obtain genotype–
environment associations using our dataset of 413 environmental variables. We note in 
passing that the computational power needed to compute the 1,656 GWAS analyses that 
were necessary to complete this study was alleviated by using the GLM + PCA model. 
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